
 1

Evolving TSP heuristics using
Multi Expression Programming

Mihai Oltean, D. Dumitrescu

Department of Computer Science,

Faculty of Mathematics and Computer Science,
�����-�����	 ��	���	��� ������	����� ��

Cluj-Napoca, 3400, Romania.
email: {moltean, ddumitr}@nessie.cs.ubbcluj.ro

Abstract. Multi Expression Programming (MEP) is an evolutionary
technique that may be used for solving computationally difficult
problems. MEP uses a linear solution representation. Each MEP
individual is a string encoding complex expressions (computer programs).
A MEP individual may encode multiple solutions of the current problem.
In this paper MEP is used for evolving a Traveling Salesman Problem
(TSP) heuristic for graphs satisfying triangle inequality. Evolved MEP
heuristic is compared with Nearest Neighbor Heuristic (NN) and
Minimum Spanning Tree Heuristic (MST) on some difficult problems in
TSPLIB. For most of the considered problems the evolved MEP heuristic
outperforms NN and MST. The obtained algorithm was tested against
some problems in TSPLIB. The results emphasizes that evolved MEP
heuristic is a powerful tool for solving difficult TSP instances.

1. Introduction

In [12, 13, 14] a new evolutionary paradigm called Multi Expression
Programming (MEP)1 has been proposed. MEP may be considered as an
alternative to standard Genetic Programming technique [8]. MEP uses a linear
solution representation. Each MEP individual is a string encoding complex
expressions (computer programs). A MEP individual may encode multiple
solutions of the current problem. Usually the best solution is chosen for fitness
assignment purposes.

One of the most important applications of MEP is discovering heuristics for
solving computationally difficult (mainly NP–Complete) problems. Instead of
searching the solution of a particular problem the MEP aim is to discover a
heuristic that solves the entire class of instances for a given problem.

In this paper MEP technique is used for discovering TSP heuristics for
graphs satisfying triangle inequality (TI graphs). This option was chosen due to
the existence of a big number of real-world applications implying TI graphs (e.g.
plains, trains and vehicles routes). MEP technique is used to learn a path function
f that is used for evaluating the reachable nodes. This function serves as a
heuristic for detecting the optimum path.

In the proposed approach the TSP path starts with a randomly selected node
of the graph. Each node reachable from the current node in one step is evaluated
using the function (computer program) f evolved by MEP algorithm. The best

1 MEP source code is available at the address www.mep.cs.ubbcluj.ro.

 2

node is added to the already detected path. The algorithm stops when the path
contains all graph nodes.

MEP learning process for TSP has a remarkable quality: the evolved
(learned) heuristic works very well for data sets much larger than the training set.
For MEP training stage graphs having 3 to 50 nodes are considered. Evolved
MEP function was tested and performs well for graphs having maximum 1000
nodes.

Evolved function f is compared with some well known heuristics. Numerical
experiments emphasize that (for considered examples) MEP function outperforms
dedicated heuristics.

2. MEP Technique

MEP uses a linear solution representation and a special phenotypic transcription
model. A MEP chromosome usually encodes several expressions (computer
programs). The ability of MEP chromosome to encode several syntactically
correct expressions is called strong implicit parallelism.

2.1. MEP Algorithm

Standard MEP algorithm starts with a randomly generated population of
individuals.

A fixed number of the high fit individuals enter in the next generation
(elitism). The mating pool is filled using binary tournament selection. Individuals
from mating pool are randomly paired and recombined. By recombination of two
parents two offspring are obtained. The offspring are mutated and enter the next
generation.

2.2. MEP Representation

MEP genes are substrings of variable length. Number of genes in a chromosome
is constant and it represents chromosome length. Each gene encodes a terminal or
a function symbol. A gene encoding a function includes pointers towards genes
containing the function arguments. Function parameters always have indices of
lower values than the position of that function symbol itself in chromosome.

Proposed representation ensures no cycle arises when the chromosome is
decoded (phenotypically transcripted). According to the proposed representation
scheme the first symbol of the chromosome must be a terminal symbol. In this
way only syntactically correct programs are generated by MEP technique.
Let T = {a, b, c, d} be the set of terminal symbols and F = {+, *} be the set of
function symbols. Consider as an example the MEP chromosome C given below:

1: a
2: b
3: + 1, 2
4: c
5: d
6: * 4, 5

 3

Remark: Numbers on the left positions stand for gene labels or addresses.
Actually labels do not belong to the chromosome, but they are provided for
explanation purposes only.

2.3. MEP phenotypic transcription

MEP chromosomes are read downstream starting with the first position. A
terminal symbol specifies a simple expression. A function symbol specifies a
complex expression (formed by connecting the operands specified by the
argument positions with the current function symbol).

Consider the chromosome C specified above (section 2.2). Chromosome C is
not able to encode a unique expression that involves all of the genes. But C
encodes the expressions:

E1 = a,
E2 = b,
E3 = a + b,
E4 = c,
E5 = d,
E6 = c + d.

Each MEP chromosome is allowed to encode a number of expressions equal
to the chromosome length (number of genes). Expression associated to each
chromosome position is obtained by interpreting the respective gene.

2.4. Selection and search operators

Within MEP technique binary tournament [Goldberg] selection is used. Search
operators are recombination and mutation. These possible operators are defined to
preserve the chromosome structure. All offspring describe syntactically correct
expressions.

2.4.1. Recombination

Three variants of recombination operator have been considered and tested within
our MEP implementation: one–point crossover, two–point crossover and uniform
crossover. These operators are simple versions of standard binary crossover
operators (see [4], [6]). Two–point crossover seems to work best with MEP ([12])
and it will be used in all experiments considered in this paper.

2.4.2. Mutation

Mutation operator may be applied to each chromosome gene. A mutation
probability (pm) is considered when applying mutation operator.

By mutation some symbols in chromosome are changed. To preserve the
chromosome structure its first gene must encode, also after mutation, a terminal
symbol. For other genes there is no restriction in symbols changing.

If the gene selected for mutation encodes a terminal symbol, this symbol may
be changed into another terminal symbol or into a function symbol. In the last
case the positions (addresses) indicating the function arguments are randomly
generated.

 4

If the mutating gene encodes a function, then the gene may be mutated into a
terminal symbol or into another function (i.e. function symbol and pointers
towards arguments).

3. TSP problem with triangle inequality

TSP problem for TI graphs (i.e. satisfying triangle inequality) is stated as follows.
Consider a set C = {c0, c1,…, cN–1} of cities, and a distance d(ci, cj) ∈ Z+ for each
pair ci, cj ∈ C, d(ci, cj) = d(cj, ci), and for each three cities ci, cj, ck ∈ C, d(ci, cj) ≤
d(ci, ck) + d(ck, cj). The tour <cπ(0), cπ(1), …, cπ(N–1)> of all cities in C having
minimum length is needed ([1], [3])

TSP problem with triangle inequality is an NP–complete problem [7]. No
polynomial time algorithm for solving TSP problem is known.
Several heuristics for solving TSP problem have been proposed. The most
important are Nearest Neighbor ([3], [7]) and the Minimum Spanning Tree ([3]).

4. Evolving Heuristics for TSP

In this section we address the problem of discovering heuristics that can solve
TSP rather than solving a particular instance of the problem.

MEP technique is used for evolving a path function f that gives a way to
choose graph vertices in order to obtain a Hamiltonian cycle. The fitness is
assigned to a function f in the current population by applying f on several
randomly chosen graphs (training set) and evaluating the results.

Evolved path function may be used for solving particular instances of TSP.
For each problem the graph nodes are evaluated using the path function f and are
added one by one to the already build path.

The algorithm for TSP using evolved path function f may be described as
follows:

S1. Let cπ(0) = c0 {the path starts with the node c0}
S2. k = 1;
S3. while k < N – 1 do
S4. Using function f select cπ(k+1) – the next node of the path
S5. Add cπ(k+1) to the already built path.
S6. k = k + 1;
S7. endwhile

S4 is the key step of this algorithm. The procedure that selects the next node
of the path in an optimal way uses the function f evolved by the MEP technique
as described in sections 4.1 and 4.2.

4.1. Terminal and Function Symbols for Evolving Heuristic Function f

Path function f has to use (as input) some information about already build path
and some information about unvisited nodes.

A natural way for defining the set of terminals is to consider the terminals as
representing the distances between nodes. Therefore we have:
T = {di j, | 0 ≤ i ≤ N – 1, 0 ≤ j ≤ N – 1}.

 5

But this approach leads to some difficulties when applied for graphs having
different number of nodes. To avoid this difficulty, we consider a special terminal
set which is independent with respect to the number of graph nodes.

Let us denote by y1 the last visited node (current node). We have to select the
next node to be added to the path. In this respect all unvisited nodes are
considered. Let us denote by y2 the next node to be visited.

For evolving path function f we consider a set T of terminals involving the
following elements:
(i) d_y1_y2 – distance between the graph nodes y1 and y2,
(ii) min_g_y1 (min_g_y2) – the minimum distance from the nodes y1 (y2) to

unvisited nodes,
(iii) sum_g_y1 (sum_g_y2) – the sum of all distances between nodes y1 (y2) and

unvisited nodes,
(iv) prod_g_y1 (prod_g_y2) – the product of all distances between nodes y1 (y2)

and unvisited nodes,
(v) max_g_y1 (max_g_y2) – the maximum distance from the nodes y1 (y2) to

unvisited nodes,
(vi) length – the length of the already built path.

The set T of terminals (function variables) is thus:

T = {d_y1_y2, min_g_y1, min_g_y2, max_g_y1, max_g_y2, sum_g_y1, sum_g_y2,
prod_g_y1, prod_g_y2, length}.

Let us remark that members of T are not actual terminals (in the standard

acceptation). For this reason we may call members of T as instantiated (or
intermediate) nonterminals.

Set T of terminals is chosen in such way to be independent of the number of
graph nodes. This choice confers flexibility and robustness to the evolved
heuristic.

For evolving a MEP function for TSP problem we may consider the
following set of function symbols: F = {+, –, /, *, cos, sin, min, max}.

The node y2 that generates the lowest output of evolved function f is chosen
to be the next node of the path. Ties are solved arbitrarily. For instance we may
consider the node with the lowest index is selected.

Example

Consider the MEP linear structure:
1: d_y1_y2
2: min_g_y1
3: + 1, 2
4: sum_g_y2
5: * 2, 4

This MEP individual encodes the path functions f1, f2, f3, f4, f5 given by:
f1 = d_y1_y2 ,
f2 = min_g_y1 ,
f3 = d_y1_y2 + min_g_y1 ,
f4 = sum_g_y2 ,
f5 = min_g_y1 * sum_g_y2.

 6

4.2. Fitness assignment

In order to obtain a good heuristic we have to train the path function f using
several graphs. The training graphs are randomly generated at the beginning of
the search process and remain unchanged during the search process. To avoid
overfitting (see [15]), another set of randomly generated graphs (validation set) is
considered. After each generation the quality of the best-so-far individual is
calculated using the validation set in order to check its generalization ability
during training. At the end of the search process, the function with the highest
quality is supplied as the program output.

The fitness (quality) of a detected path function f is defined as the sum of the
TSP path length of graphs in the training set. Thus the fitness is to be minimized.

4.3. A Numerical Experiment

In this experiment we evolve a heuristic for solving TSP problem.

Let us denote by Gk the set of class of TI graphs having maximum k nodes.
MEP algorithm considers the class G50 (i.e. graphs having 3 to 50 nodes) for
training and the class G100 for validation. Evolved path function was tested for
graphs in the class G1000 (i.e. graphs having maxim 1000 nodes). MEP algorithm
parameters are given in Table 1.

Population size 300
Number of generations 100
Chromosome length 40 genes
Mutation probability 0.1
Crossover type One-Crossover-Point
Crossover probability 0.9
Training set size 30
Maximum number of nodes in training set 50
Validation set size 20
Maximum number of nodes in validation set 100
Table 1. MEP algorithm parameters for evolving a heuristic for TSP with triangle
inequality.

The evolution of the best individual fitness and the average fitness of the best
individuals over 30 runs are depicted in Figure 1.

 7

Figure 1. The fitness evolution of the best individual in the best run and the average
fitness of the best individuals over 30 runs.

A path function evolved by the MEP algorithm is:
f = (sum_g(y2)) * (d_y1_y2 � �max(d_y1_y2, max_g(y1))) + d_y1_y2).

Heuristic function f that is evolved by MEP technique is directly used for
building the optimum path. The corresponding learning process has a remarkable
quality: the evolved (learned) heuristic works very well on data sets significantly
larger than the training set. In our example the training set G50 is significantly
smaller than the set G1000 used for testing.

5. Assessing the Performance of the Evolved MEP Heuristic

In this section the performance of evolved MEP heuristic, NN and MST are
compared. In the first experiment we compare the considered algorithms on some
randomly generated graphs. In the second experiment the heuristics are compared
against several difficult problems in TSPLIB [16].

5.1. Experiment 1

In this experiment we provide a direct comparison of the evolved MEP heuristic,
NN and MST. The considered heuristics are tested for randomly generated graphs
satisfying triangle inequality.

Evolved heuristic was tested for different graphs from the classes G200, G500
and G1000. For each graph class 1000 graphs satisfying triangle inequality have
been randomly generated. These graphs have been considered for experiments
with evolved MEP heuristic, NN and MST.

Performance of evolved MEP heuristic, NN and MST are depicted in Table 2

Table 2. Evolved MEP heuristic vs. NN, MST. For each graph class we present the
number of graphs for which evolved MEP heuristic generates a cycle shorter than the cycle
obtained by the algorithm MST and NN.

 8

Graphs types MST NN

G200 953 800
G500 974 906
G1000 990 948

Results obtained emphasizes that evolved MEP heuristic outperforms NN
and MST algorithms on random graphs.

5.2. Experiment 2

To obtain a stronger evidence of the results above we test the performance of the
considered heuristics against some difficult problems in TSPLIB. The results are
presented in Table 3.

Table 3. The performance of evolved MEP heuristic, NN and MST on some problems in
TSPLIB. Length is the length of the TSP path obtained with one of the considered
heuristics. Error is calculated as (Length – Shortest_Length)/ Shortest_Length * 100. Each
node of the graph has been considered as the first node of the path.
Problem MEP NN MST
 Length Error

(%)
Length Error (%) Length Error

(%)
a280 2858.86 10.85 3084.22 19.58976 3475.23 34.75
att48 37188.2 10.93 39236.9 17.04227 43955.8 31.11
berlin52 7672.1 1.72 8182.19 8.488332 10403.9 37.94
bier127 134945 14.08 127954 8.177068 152747 29.13
ch130 6558.03 7.33 7198.74 17.81899 8276.51 35.45
ch150 7104.03 8.82 7078.44 8.431985 9142.99 40.05
d198 17780.7 12.67 17575.1 11.37579 17957.6 13.79
d493 43071.3 23.05 41167 17.61328 41846.6 19.55
d657 56965.6 16.46 60398.7 23.48442 63044.2 28.89
eil101 685.013 8.9 753.044 19.72083 846.116 34.51
eil51 441.969 3.74 505.298 18.61455 605.049 42.03
eil76 564.179 4.86 612.656 13.87658 739.229 37.4
fl417 13933.8 17.47 13828.2 16.58545 16113.2 35.85
gil262 2659.17 11.82 2799.49 17.72456 3340.84 40.48
kroA150 28376.3 6.98 31482 18.6925 38754.8 46.11
kroA200 32040.3 9.09 34547.7 17.63722 40204.1 36.89
kroB100 24801 12.01 25883 16.90077 28803.5 30.09
kroB200 33267.4 13.01 35592.4 20.91042 40619.9 37.98
lin105 15133.2 5.24 16939.4 17.80652 18855.6 31.13
lin318 46203.4 9.93 49215.6 17.09915 60964.8 45.05
pcb442 56948.3 12.15 57856.3 13.9397 73580.1 44.9
pr226 84937.8 5.68 92905.1 15.59818 111998 39.35
pr264 55827.1 13.61 54124.5 10.15468 65486.5 33.27
rat195 2473.49 6.47 2560.62 10.22901 2979.64 28.26
rat575 7573.6 11.82 7914.2 16.84925 9423.4 39.13
rat783 9982.96 13.36 10836.6 23.05928 11990.5 36.16
rd400 16973.3 11.07 18303.3 19.77816 20962 37.17

 9

ts225 136069 7.44 140485 10.92994 187246 47.85
u574 43095.6 16.77 44605.1 20.86465 50066 35.66
u724 46545.7 11.06 50731.4 21.04844 60098.9 43.39

From Table 3 we can see that evolved MEP heuristic performs better than
NN and MST on most of the considered problems. Only for five problems
(bier127, ch150, d198, d493, fl417) NN performs better than evolved MEP
heuristic. MST does not perform better than evolved MEP heuristic for no
problem. The highest error obtained by the evolved MEP heuristic is 23.05 (the
problem d493) while the highest error obtained by NN is 23.45 (the problem
rd400). The lowest error obtained with MEP is 1.72 (problem berlin52) while the
lowest error obtained by NN is 8.17 (problem bier127). The mean of errors for all
considered problems is 10.61 (for evolved MEP heuristic) 16.33 (for NN
heuristic) and 35.77 (for MST heuristic).

6. Conclusions and Further Work

MEP technique is used to evolve heuristics for solving TSP problems.
Experimental results emphasizes that evolved heuristic outperforms some well
known dedicated heuristics.

Moreover improvement of MEP results could be realized by allowing more
function symbols to appear in the MEP chromosome. Further research will focus
on using MEP for discovering better heuristics for solving TSP.

Further improvement may be obtained by increasing the chromosome length.
In this case the complexity of the evolved formula could increases, but the
performances of the obtained heuristic could be significantly better.

Evolving functions that outperform other dedicated heuristics would be of
great practical interest. In this way computer programs that are hard to implement
could be simulated by simple functions.

References

[1] E.H.L. Aarts, J. K. Lenstra (ed), Local Search in Combinatorial

Optimization, John Wiley and Sons, London 1997.
[2] K. Boese, Cost versus Distance in the Traveling Salesman Problem, Tech.

Rep. TR-950018, UCLA CS Department, 1995.
[3] T.H. Cormen, C.E. Leiserson, R. R. Rivest, Introduction to Algorithms, MIT

Press, 1990.
[4] D. Dumitrescu, B. Lazzerini, L. Jain, A. Dumitrescu, Evolutionary

Computation. CRC Press, Boca Raton, FL, 2000.
[5] B. Freisleben and P. Merz, A Genetic Local Search Algorithm for Solving

Symmetric and Asymmetric Traveling Salesman Problems, In Proceedings of
the 1996 IEEE International Conference on Evolutionary Computation, pp.
616-621, 1996.

[6] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley, Reading, MA, 1989.

[7] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to NP–
Completeness, Freeman & Co, San Francisco, CA, 1979.

[8] J. R. Koza, Genetic Programming: On the Programming of Computers by
Means of Natural Selection, MIT Press, Cambridge, 1992.

 10

[9] N. Krasnogor, Studies on the Theory and Design Space of Memetic
Algorithms, PhD Thesis, University of the West of England, Bristol, 2002.

[10] N. Krasnogor, J.E. Smith. A Memetic Algorithm with self-adaptive local
search: TSP a case study, In Proceedings of 2000 Genetic and Evolutionary
Computation Conference, Morgan Kaufmann, 2000.

[11] P. Merz, B. Freisleben, Genetic Local Search for the TSP: New Results, In
Proceedings of the 1997 IEEE International Conference on Evolutionary
Computation, pp. 616-621, 1997.

[12] M. Oltean, D. Dumitrescu, Multi Expression Programming, Journal of
Genetic Programming and Evolvable Machines, Kluwer, in review.

[13] M. Oltean, Solving Even-Parity Problems using Multi Expression
Programming, Proceedings of the the 7th Joint Conference on Information
Sciences, September 26-30, 2003, Research Triangle Park, North Carolina,
Edited by Ken Chen (et. al), pp. 315-318, 2003.

[14] Oltean M. and ������ C, Evolving Evolutionary Algorithms using Multi
Expression Programming, The 7th European Conference on Artificial Life,
September 14-17, 2003, Dortmund, Edited by W. Banzhaf (et al), LNAI
2801, pp. 651-658, Springer Berlin, 2003

[15] Prechelt L., PROBEN1 – A set of neural network problems and
benchmarking rules, technical report 21/94, University of Karlsruhe, 1994.

[16] Reinelt G., “TSPLIB – A Traveling Salesman Problem Library, ORSA,
Journal of Computing, vol. 3, no 4, pp 376-384, 1991.

