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Abstract. Multi Expression Programming (MEP) is an evolutionary 
technique that may be used for solving computationally difficult 
problems. MEP uses a linear solution representation. Each MEP 
individual is a string encoding complex expressions (computer programs). 
A MEP individual may encode multiple solutions of the current problem. 
In this paper MEP is used for evolving a Traveling Salesman Problem 
(TSP) heuristic for graphs satisfying triangle inequality. Evolved MEP 
heuristic is compared with Nearest Neighbor Heuristic (NN) and 
Minimum Spanning Tree Heuristic (MST) on some difficult problems in 
TSPLIB. For most of the considered problems the evolved MEP heuristic 
outperforms NN and MST. The obtained algorithm was tested against 
some problems in TSPLIB. The results emphasizes that evolved MEP 
heuristic is a powerful tool for solving difficult TSP instances. 

 
1. Introduction 
 
In [12, 13, 14] a new evolutionary paradigm called Multi Expression 
Programming (MEP)1 has been proposed. MEP may be considered as an 
alternative to standard Genetic Programming technique [8]. MEP uses a linear 
solution representation. Each MEP individual is a string encoding complex 
expressions (computer programs). A MEP individual may encode multiple 
solutions of the current problem. Usually the best solution is chosen for fitness 
assignment purposes. 

One of the most important applications of MEP is discovering heuristics for 
solving computationally difficult (mainly NP–Complete) problems. Instead of 
searching the solution of a particular problem the MEP aim is to discover a 
heuristic that solves the entire class of instances for a given problem. 

In this paper MEP technique is used for discovering TSP heuristics for 
graphs satisfying triangle inequality (TI graphs). This option was chosen due to 
the existence of a big number of real-world applications implying TI graphs (e.g. 
plains, trains and vehicles routes). MEP technique is used to learn a path function 
f that is used for evaluating the reachable nodes. This function serves as a 
heuristic for detecting the optimum path. 

In the proposed approach the TSP path starts with a randomly selected node 
of the graph. Each node reachable from the current node in one step is evaluated 
using the function (computer program) f evolved by MEP algorithm. The best 

                                                           
1 MEP source code is available at the address www.mep.cs.ubbcluj.ro. 
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node is added to the already detected path. The algorithm stops when the path 
contains all graph nodes. 

MEP learning process for TSP has a remarkable quality: the evolved 
(learned) heuristic works very well for data sets much larger than the training set. 
For MEP training stage graphs having 3 to 50 nodes are considered. Evolved 
MEP function was tested and performs well for graphs having maximum 1000 
nodes. 

Evolved function f is compared with some well known heuristics. Numerical 
experiments emphasize that (for considered examples) MEP function outperforms 
dedicated heuristics.  
 
2. MEP Technique 
 
MEP uses a linear solution representation and a special phenotypic transcription 
model. A MEP chromosome usually encodes several expressions (computer 
programs). The ability of MEP chromosome to encode several syntactically 
correct expressions is called strong implicit parallelism. 
 
2.1. MEP Algorithm 
 
Standard MEP algorithm starts with a randomly generated population of 
individuals. 

A fixed number of the high fit individuals enter in the next generation 
(elitism). The mating pool is filled using binary tournament selection. Individuals 
from mating pool are randomly paired and recombined. By recombination of two 
parents two offspring are obtained. The offspring are mutated and enter the next 
generation. 
 
2.2. MEP Representation 
 
MEP genes are substrings of variable length. Number of genes in a chromosome 
is constant and it represents chromosome length. Each gene encodes a terminal or 
a function symbol. A gene encoding a function includes pointers towards genes 
containing the function arguments. Function parameters always have indices of 
lower values than the position of that function symbol itself in chromosome.  

Proposed representation ensures no cycle arises when the chromosome is 
decoded (phenotypically transcripted). According to the proposed representation 
scheme the first symbol of the chromosome must be a terminal symbol. In this 
way only syntactically correct programs are generated by MEP technique. 
Let T = {a, b, c, d} be the set of terminal symbols and F = {+, *} be the set of 
function symbols. Consider as an example the MEP chromosome C given below: 
 
1: a 
2: b 
3: + 1, 2 
4: c 
5: d 
6: * 4, 5 
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Remark: Numbers on the left positions stand for gene labels or addresses. 
Actually labels do not belong to the chromosome, but they are provided for 
explanation purposes only.  

 
2.3. MEP phenotypic transcription  
 
MEP chromosomes are read downstream starting with the first position. A 
terminal symbol specifies a simple expression. A function symbol specifies a 
complex expression (formed by connecting the operands specified by the 
argument positions with the current function symbol). 

Consider the chromosome C specified above (section 2.2). Chromosome C is 
not able to encode a unique expression that involves all of the genes. But C 
encodes the expressions: 

 
E1 = a, 
E2 = b, 
E3 = a + b, 
E4 = c, 
E5 = d, 
E6 = c + d. 
 

Each MEP chromosome is allowed to encode a number of expressions equal 
to the chromosome length (number of genes). Expression associated to each 
chromosome position is obtained by interpreting the respective gene. 

 
2.4. Selection and search operators 
 
Within MEP technique binary tournament [Goldberg] selection is used. Search 
operators are recombination and mutation. These possible operators are defined to 
preserve the chromosome structure. All offspring describe syntactically correct 
expressions.  
 
2.4.1. Recombination 
 
Three variants of recombination operator have been considered and tested within 
our MEP implementation: one–point crossover, two–point crossover and uniform 
crossover. These operators are simple versions of standard binary crossover 
operators (see [4], [6]). Two–point crossover seems to work best with MEP ([12]) 
and it will be used in all experiments considered in this paper. 
 
2.4.2. Mutation 
 
Mutation operator may be applied to each chromosome gene. A mutation 
probability (pm) is considered when applying mutation operator. 

By mutation some symbols in chromosome are changed. To preserve the 
chromosome structure its first gene must encode, also after mutation, a terminal 
symbol. For other genes there is no restriction in symbols changing. 

If the gene selected for mutation encodes a terminal symbol, this symbol may 
be changed into another terminal symbol or into a function symbol. In the last 
case the positions (addresses) indicating the function arguments are randomly 
generated. 



 4 

If the mutating gene encodes a function, then the gene may be mutated into a 
terminal symbol or into another function (i.e. function symbol and pointers 
towards arguments). 
 
3. TSP problem with triangle inequality 
 
TSP problem for TI graphs (i.e. satisfying triangle inequality) is stated as follows. 
Consider a set C = {c0, c1,…, cN–1} of cities, and a distance d(ci, cj) ∈  Z+ for each 
pair ci, cj ∈  C, d(ci, cj) = d(cj, ci), and for each three cities ci, cj, ck ∈  C,  d(ci, cj) ≤ 
d(ci, ck) + d(ck, cj). The tour <cπ(0), cπ(1), …, cπ(N–1)> of all cities in C having 
minimum length is needed  ([1], [3]) 

TSP problem with triangle inequality is an NP–complete problem [7]. No 
polynomial time algorithm for solving TSP problem is known. 
Several heuristics for solving TSP problem have been proposed. The most 
important are Nearest Neighbor ([3], [7]) and the Minimum Spanning Tree ([3]). 
 
4. Evolving Heuristics for TSP 
 
In this section we address the problem of discovering heuristics that can solve 
TSP rather than solving a particular instance of the problem. 

MEP technique is used for evolving a path function f that gives a way to 
choose graph vertices in order to obtain a Hamiltonian cycle. The fitness is 
assigned to a function f in the current population by applying f on several 
randomly chosen graphs (training set) and evaluating the results. 

Evolved path function may be used for solving particular instances of TSP. 
For each problem the graph nodes are evaluated using the path function f and are 
added one by one to the already build path.  

The algorithm for TSP using evolved path function f may be described as 
follows: 

 
S1. Let cπ(0) = c0  {the path starts with the node c0} 
S2. k = 1;  
S3. while k < N – 1 do 
S4.  Using function f select cπ(k+1)  – the next node of the path  
S5.  Add cπ(k+1) to the already built path.  
S6.  k = k + 1; 
S7. endwhile 
 

S4 is the key step of this algorithm. The procedure that selects the next node 
of the path in an optimal way uses the function f evolved by the MEP technique 
as described in sections 4.1 and 4.2. 

 
4.1. Terminal and Function Symbols for Evolving Heuristic Function f 
 
Path function f has to use (as input) some information about already build path 
and some information about unvisited nodes. 

A natural way for defining the set of terminals is to consider the terminals as 
representing the distances between nodes. Therefore we have: 
T = {di j, | 0 ≤ i ≤ N – 1, 0 ≤ j ≤ N – 1}. 
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But this approach leads to some difficulties when applied for graphs having 
different number of nodes. To avoid this difficulty, we consider a special terminal 
set which is independent with respect to the number of graph nodes. 

Let us denote by y1 the last visited node (current node). We have to select the 
next node to be added to the path. In this respect all unvisited nodes are 
considered. Let us denote by y2 the next node to be visited. 

For evolving path function f we consider a set T of terminals involving the 
following elements: 
(i) d_y1_y2 – distance between the graph nodes y1 and y2, 
(ii) min_g_y1 (min_g_y2) – the minimum distance from the nodes y1  (y2) to 

unvisited nodes,  
(iii) sum_g_y1 (sum_g_y2) – the sum of all distances between nodes y1 (y2) and 

unvisited nodes,  
(iv) prod_g_y1 (prod_g_y2) – the product of all distances between nodes y1 (y2) 

and unvisited nodes, 
(v) max_g_y1 (max_g_y2) – the maximum distance from the nodes y1 (y2) to 

unvisited nodes, 
(vi) length – the length of the already built path. 

 
The set T of terminals (function variables) is thus: 
 

T = {d_y1_y2, min_g_y1, min_g_y2, max_g_y1, max_g_y2, sum_g_y1, sum_g_y2, 
prod_g_y1, prod_g_y2, length}. 

 
Let us remark that members of T are not actual terminals (in the standard 

acceptation). For this reason we may call members of T as instantiated (or 
intermediate) nonterminals.  

Set T of terminals is chosen in such way to be independent of the number of 
graph nodes. This choice confers flexibility and robustness to the evolved 
heuristic. 

For evolving a MEP function for TSP problem we may consider the 
following set of function symbols: F = {+, –, /, *, cos, sin, min, max}. 

The node y2 that generates the lowest output of evolved function f is chosen 
to be the next node of the path. Ties are solved arbitrarily. For instance we may 
consider the node with the lowest index is selected.  

 
Example 
 
Consider the MEP linear structure: 
1: d_y1_y2 
2: min_g_y1 
3: + 1, 2 
4: sum_g_y2 
5: * 2, 4 
 
This MEP individual encodes the path functions f1, f2, f3, f4, f5 given by: 
f1 = d_y1_y2 , 
f2 = min_g_y1 , 
f3 = d_y1_y2 + min_g_y1 , 
f4 = sum_g_y2 , 
f5 = min_g_y1 * sum_g_y2. 
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4.2. Fitness assignment  
 
In order to obtain a good heuristic we have to train the path function f using 
several graphs. The training graphs are randomly generated at the beginning of 
the search process and remain unchanged during the search process. To avoid 
overfitting (see [15]), another set of randomly generated graphs (validation set) is 
considered. After each generation the quality of the best-so-far individual is 
calculated using the validation set in order to check its generalization ability 
during training. At the end of the search process, the function with the highest 
quality is supplied as the program output. 

The fitness (quality) of a detected path function f is defined as the sum of the 
TSP path length of graphs in the training set. Thus the fitness is to be minimized. 

 
4.3. A Numerical Experiment 
 
In this experiment we evolve a heuristic for solving TSP problem. 

Let us denote by Gk the set of class of TI graphs having maximum k nodes. 
MEP algorithm considers the class G50 (i.e. graphs having 3 to 50 nodes) for 
training and the class G100 for validation. Evolved path function was tested for 
graphs in the class G1000 (i.e. graphs having maxim 1000 nodes). MEP algorithm 
parameters are given in Table 1. 
 
Population size 300 
Number of generations 100 
Chromosome length 40 genes 
Mutation probability 0.1 
Crossover type One-Crossover-Point 
Crossover probability 0.9 
Training set size 30 
Maximum number of nodes in training set 50 
Validation set size 20 
Maximum number of nodes in validation set 100 
Table 1. MEP algorithm parameters for evolving a heuristic for TSP with triangle 
inequality. 
 
The evolution of the best individual fitness and the average fitness of the best 
individuals over 30 runs are depicted in Figure 1. 
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Figure 1. The fitness evolution of the best individual in the best run and the average 
fitness of the best individuals over 30 runs. 
 

A path function evolved by the MEP algorithm is: 
f = (sum_g(y2)) * (d_y1_y2 � �max(d_y1_y2, max_g(y1))) + d_y1_y2). 

Heuristic function f that is evolved by MEP technique is directly used for 
building the optimum path. The corresponding learning process has a remarkable 
quality: the evolved (learned) heuristic works very well on data sets significantly 
larger than the training set. In our example the training set G50 is significantly 
smaller than the set G1000 used for testing. 
 
5. Assessing the Performance of the Evolved MEP Heuristic 
 
In this section the performance of evolved MEP heuristic, NN and MST are 
compared. In the first experiment we compare the considered algorithms on some 
randomly generated graphs. In the second experiment the heuristics are compared 
against several difficult problems in TSPLIB [16].  
 
5.1. Experiment 1 
 
In this experiment we provide a direct comparison of the evolved MEP heuristic, 
NN and MST. The considered heuristics are tested for randomly generated graphs 
satisfying triangle inequality. 

Evolved heuristic was tested for different graphs from the classes G200, G500 
and G1000. For each graph class 1000 graphs satisfying triangle inequality have 
been randomly generated. These graphs have been considered for experiments 
with evolved MEP heuristic, NN and MST. 

Performance of evolved MEP heuristic, NN and MST are depicted in Table 2 
 
Table 2. Evolved MEP heuristic vs. NN, MST. For each graph class we present the 
number of graphs for which evolved MEP heuristic generates a cycle shorter than the cycle 
obtained by the algorithm MST and NN. 
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Graphs types MST NN 

G200 953 800 
G500 974 906 
G1000 990 948 
 

Results obtained emphasizes that evolved MEP heuristic outperforms NN 
and MST algorithms on random graphs.  
 
5.2. Experiment 2 
 
To obtain a stronger evidence of the results above we test the performance of the 
considered heuristics against some difficult problems in TSPLIB. The results are 
presented in Table 3. 
 
Table 3. The performance of evolved MEP heuristic, NN and MST on some problems in 
TSPLIB. Length is the length of the TSP path obtained with one of the considered 
heuristics. Error is calculated as (Length – Shortest_Length)/ Shortest_Length * 100. Each 
node of the graph has been considered as the first node of the path. 
Problem MEP NN MST 
 Length Error 

(%) 
Length Error (%) Length Error 

(%) 
a280  2858.86  10.85 3084.22 19.58976 3475.23 34.75 
att48  37188.2  10.93 39236.9 17.04227 43955.8 31.11 
berlin52  7672.1  1.72 8182.19 8.488332 10403.9 37.94 
bier127  134945  14.08 127954 8.177068 152747 29.13 
ch130  6558.03  7.33 7198.74 17.81899 8276.51 35.45 
ch150  7104.03  8.82 7078.44 8.431985 9142.99 40.05 
d198  17780.7  12.67 17575.1 11.37579 17957.6 13.79 
d493  43071.3  23.05 41167 17.61328 41846.6 19.55 
d657  56965.6  16.46 60398.7 23.48442 63044.2 28.89 
eil101  685.013  8.9 753.044 19.72083 846.116 34.51 
eil51  441.969  3.74 505.298 18.61455 605.049 42.03 
eil76  564.179  4.86 612.656 13.87658 739.229 37.4 
fl417 13933.8  17.47 13828.2 16.58545 16113.2 35.85 
gil262 2659.17 11.82 2799.49 17.72456 3340.84 40.48 
kroA150  28376.3  6.98 31482 18.6925 38754.8 46.11 
kroA200  32040.3  9.09 34547.7 17.63722 40204.1 36.89 
kroB100  24801  12.01 25883 16.90077 28803.5 30.09 
kroB200  33267.4  13.01 35592.4 20.91042 40619.9 37.98 
lin105  15133.2  5.24 16939.4 17.80652 18855.6 31.13 
lin318  46203.4  9.93 49215.6 17.09915 60964.8 45.05 
pcb442  56948.3  12.15 57856.3 13.9397 73580.1 44.9 
pr226  84937.8  5.68 92905.1 15.59818 111998 39.35 
pr264 55827.1 13.61 54124.5 10.15468 65486.5 33.27 
rat195  2473.49  6.47 2560.62 10.22901 2979.64 28.26 
rat575 7573.6 11.82 7914.2 16.84925 9423.4 39.13 
rat783 9982.96 13.36 10836.6 23.05928 11990.5 36.16 
rd400 16973.3 11.07 18303.3 19.77816 20962 37.17 
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ts225  136069  7.44 140485 10.92994 187246 47.85 
u574 43095.6 16.77 44605.1 20.86465 50066 35.66 
u724 46545.7 11.06 50731.4 21.04844 60098.9 43.39 
 

From Table 3 we can see that evolved MEP heuristic performs better than 
NN and MST on most of the considered problems. Only for five problems 
(bier127, ch150, d198, d493, fl417) NN performs better than evolved MEP 
heuristic. MST does not perform better than evolved MEP heuristic for no 
problem. The highest error obtained by the evolved MEP heuristic is 23.05 (the 
problem d493) while the highest error obtained by NN is 23.45 (the problem 
rd400). The lowest error obtained with MEP is 1.72 (problem berlin52) while the 
lowest error obtained by NN is 8.17 (problem bier127). The mean of errors for all 
considered problems is 10.61 (for evolved MEP heuristic) 16.33 (for NN 
heuristic) and 35.77 (for MST heuristic). 
 
6. Conclusions and Further Work 
 
MEP technique is used to evolve heuristics for solving TSP problems. 
Experimental results emphasizes that evolved heuristic outperforms some well 
known dedicated heuristics. 

Moreover improvement of MEP results could be realized by allowing more 
function symbols to appear in the MEP chromosome. Further research will focus 
on using MEP for discovering better heuristics for solving TSP. 

Further improvement may be obtained by increasing the chromosome length. 
In this case the complexity of the evolved formula could increases, but the 
performances of the obtained heuristic could be significantly better. 

Evolving functions that outperform other dedicated heuristics would be of 
great practical interest. In this way computer programs that are hard to implement 
could be simulated by simple functions. 

 
References 
 
[1] E.H.L. Aarts, J. K. Lenstra (ed), Local Search in Combinatorial 

Optimization, John Wiley and Sons, London 1997. 
[2] K. Boese, Cost versus Distance in the Traveling Salesman Problem, Tech. 

Rep. TR-950018, UCLA CS Department, 1995. 
[3] T.H. Cormen, C.E. Leiserson, R. R. Rivest, Introduction to Algorithms, MIT 

Press, 1990. 
[4] D. Dumitrescu, B. Lazzerini, L. Jain, A. Dumitrescu, Evolutionary 

Computation. CRC Press, Boca Raton, FL, 2000. 
[5] B. Freisleben and P. Merz, A Genetic Local Search Algorithm for Solving 

Symmetric and Asymmetric Traveling Salesman Problems, In Proceedings of 
the 1996 IEEE International Conference on Evolutionary Computation, pp. 
616-621, 1996. 

[6] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine 
Learning, Addison-Wesley, Reading, MA, 1989. 

[7] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to NP–
Completeness, Freeman & Co, San Francisco, CA, 1979. 

[8] J. R. Koza, Genetic Programming: On the Programming of Computers by 
Means of Natural Selection, MIT Press, Cambridge, 1992. 



 10 

[9] N. Krasnogor, Studies on the Theory and Design Space of Memetic 
Algorithms, PhD Thesis, University of the West of England, Bristol, 2002. 

[10] N. Krasnogor, J.E. Smith. A Memetic Algorithm with self-adaptive local 
search: TSP a case study, In Proceedings of 2000 Genetic and Evolutionary 
Computation Conference, Morgan Kaufmann, 2000.   

[11] P. Merz, B. Freisleben, Genetic Local Search for the TSP: New Results, In 
Proceedings of the 1997 IEEE International Conference on Evolutionary 
Computation, pp. 616-621, 1997. 

[12] M. Oltean, D. Dumitrescu, Multi Expression Programming, Journal of 
Genetic Programming and Evolvable Machines, Kluwer, in review. 

[13] M. Oltean, Solving Even-Parity Problems using Multi Expression 
Programming, Proceedings of the the 7th Joint Conference on Information 
Sciences, September 26-30, 2003, Research Triangle Park, North Carolina, 
Edited by Ken Chen (et. al), pp. 315-318, 2003. 

[14] Oltean M. and ������ C, Evolving Evolutionary Algorithms using Multi 
Expression Programming, The 7th European Conference on Artificial Life, 
September 14-17, 2003, Dortmund, Edited by W. Banzhaf (et al),  LNAI 
2801, pp. 651-658, Springer Berlin, 2003 

[15] Prechelt L., PROBEN1 – A set of neural network problems and 
benchmarking rules, technical report 21/94, University of Karlsruhe, 1994. 

[16] Reinelt G., “TSPLIB – A Traveling Salesman Problem Library, ORSA, 
Journal of Computing, vol. 3, no 4, pp 376-384, 1991. 


