

Solving Even-Parity Problems
using Multi Expression Programming

Mihai Oltean

Department of Computer Science
Faculty of Mathematics and Computer Science

�����-�����	 ��	���	��� ������	����� �
Cluj-Napoca, 3400, Romania
moltean@nessie.cs.ubbcluj.ro

Abstract

In this paper, the Multi Expression Programming
(MEP) technique is used for solving even-parity
problems. Numerical experiments show that MEP
outperforms Genetic Programming (GP) with more than
one order of magnitude for the considered test cases.

1. Introduction

Multi Expression Programming (MEP) [5, 6] is a new
and very efficient technique that may be used for
solving difficult real-world problems. A unique feature
of MEP is its ability of storing multiple solutions in a
single chromosome [5]. As shown in [5], this feature
does not increase the complexity of the decoding
process when compared to other Genetic Programming
(GP) variants that stores a single solution in a
chromosome.

MEP technique has been used [5] for solving symbolic
regression problems. Numerical experiments proved
that MEP significantly outperforms similar techniques.

In this paper, MEP is used for solving even-parity
problems. According to [3] the Boolean even-parity
functions appear to be the most difficult Boolean
functions to detect via a blind random search. Due to
this reason the ability of the evolutionary algorithms of
performing an efficient search in the space of solutions
can be tested using this problem as a benchmark.

The results of the numerical experiments are compared
to those provided by the Genetic Programming
techniques [3, 4]. It can be easily seen that MEP
outperforms GP with more than one order of
magnitude.

2. MEP Technique

In this section Multi Expression Programming (MEP)
paradigm is briefly described.

2.1. MEP Algorithm

Standard MEP algorithm uses steady state [7] as
underlying mechanism. MEP algorithm starts by
creating a random population of individuals. The
following steps are repeated until a given number of
generations is reached. Two parents are selected using a
selection procedure. The parents are recombined in
order to obtain two offspring. The offspring are
considered for mutation. The best offspring replaces the
worst individual in the current population if the
offspring is better than the worst individual.

The algorithm returns as its answer the best expression
evolved along a fixed number of generations.

2.2. MEP Representation

MEP genes are (represented by) substrings of a variable
length. The number of genes per chromosome is
constant. This number defines the length of the
chromosome. Each gene encodes a terminal or a
function symbol. A gene encoding a function includes
pointers towards the function arguments. Function
arguments always have indices of lower values than the
position of that function in the chromosome.

This representation is similar to the way in which C and
Pascal compilers translate mathematical expressions
into machine code [1].

The proposed representation ensures that no cycle
arises while the chromosome is decoded
(phenotypically transcripted). According to the
proposed representation scheme the first symbol of the
chromosome must be a terminal symbol. In this way
only syntactically correct programs (MEP individuals)
are obtained.

Example

We use a representation where the numbers on the left
positions stand for gene labels. Labels do not belong to

the chromosome, they being provided only for
explanation purposes.

For this example we use the set of functions F = {+, *},
and the set of terminals T = {a, b, c, d}. An example of
chromosome using the sets F and T is given below:

1: a
2: b
3: + 1, 2
4: c
5: d
6: + 4, 5
7: * 3, 6

2.3. Decoding MEP Chromosome and
Fitness Assignment Process

In this section it is described the way in which MEP
individuals are translated into computer programs and
the way in which the fitness of these programs is
computed..

This translation is achieved by reading the chromosome
top-down. A terminal symbol specifies a simple
expression. A function symbol specifies a complex
expression obtained by connecting the operands
specified by the argument positions with the current
function symbol.

For instance, genes 1, 2, 4 and 5 in the previous
example encode simple expressions formed by a single
terminal symbol. These expressions are:

E1 = a,

E2 = b,

E4 = c,

E5 = d,

Gene 3 indicates the operation + on the operands
located at positions 1 and 2 of the chromosome.
Therefore gene 3 encodes the expression:

E3 = a + b.

Gene 6 indicates the operation + on the operands
located at positions 4 and 5. Therefore gene 6 encodes
the expression:

E6 = c + d.

Gene 7 indicates the operation * on the operands
located at position 3 and 6. Therefore gene 7 encodes
the expression:

E7 = (a + b) * (c + d).

E7 is the expression encoded by the whole
chromosome.

There is neither practical nor theoretical evidence that
one of these expressions is better than the others.
Moreover Wolpert and McReady [8] proved that we
cannot use the search algorithm’s behavior so far for a
particular test function to predict its future behavior on
that function. This is why each MEP chromosome is
allowed to encode a number of expressions equal to the
chromosome length. Each of these expressions is
considered as being a potential solution of the problem.

The value of these expressions may be computed by
reading the chromosome top down. Partial results are
computed by dynamic programming [2] and are stored
in a conventional manner.

As MEP chromosome encodes more than one problem
solution, it is interesting to see how the fitness is
assigned.

Usually the chromosome fitness is defined as the fitness
of the best expression encoded by that chromosome.

For instance, if we want to solve symbolic regression
problems the fitness of each sub-expression Ei may be
computed using the formula:

,)(
1

,∑
=

−=
n

k
kiki woEf

where ok,i is the obtained result by the expression Ei for
the fitness case k and wk is the targeted result for the
fitness case k. In this case the fitness needs to be
minimized.

The fitness of an individual is set to be equal to the
lowest fitness of the expressions encoded in
chromosome:

).(min)(i
i

EfCf =

When we have to deal with other problems we compute
the fitness of each sub-expression encoded in the MEP
chromosome and the fitness of the entire individual is
given by the fitness of the best expression encoded in
that chromosome.

2.4. Search Operators

Search operators used within MEP algorithm are
crossover and mutation. Considered search operators
preserve the chromosome structure. All offspring are
syntactically correct expressions.

Crossover

By crossover two parents are selected and are
recombined. For instance, within the uniform

recombination the offspring genes are taken randomly
from one parent or another.

Mutation

Each symbol (terminal, function of function pointer) in
the chromosome may be target of mutation operator. By
mutation some symbols in the chromosome are
changed. To preserve the consistency of the
chromosome its first gene must encode a terminal
symbol.

3 Numerical Experiments with
Even-Parity Problems

The Boolean even-parity function of k Boolean
arguments returns T (True) if an even number of its
arguments are T. Otherwise the even-parity function
returns NIL (False) [3].

In applying MEP to the even-parity function of k
arguments, the terminal set T consists of the k Boolean
arguments d0, d1, d2, ... dk-1. The function set F consists
of four two-argument primitive Boolean functions:
AND, OR, NAND, NOR. According to [3] the Boolean
even-parity functions appear to be the most difficult
Boolean functions to detect via a blind random search.

The set of fitness cases for this problem consists of the
2k combinations of the k Boolean arguments. The
fitness of an MEP chromosome is the sum, over these
2k fitness cases, of the Hamming distance (error)
between the returned value by the MEP chromosome
and the correct value of the Boolean function. Since the
standardized fitness ranges between 0 and 2k, a value
closer to zero is better (since the fitness is to be
minimized).

Several numerical experiments with MEP have been
performed for solving the even-3-parity, the even-4-
parity and the even-5-parity problems.

Two statistics are of high interest:

i. the relationship between the success rate and
the number of genes in a MEP chromosome,

ii. the relationship between the success rate and
the size of the population used by the MEP
algorithm.

3.1. Even-3-Parity and Even-4-Parity
Problems

For the even-3-parity problem the terminal set is T3 =
{d0, d1, d2}. For the even-4-parity problem the terminal
set is T4 = {d0, d1, d2, d3}.

Other MEP parameters are given in Table 1.

Parameter Value
Number of Generations 51
Mutation probability 0.1
Crossover type Uniform
Selection q-tournament (q = 10% of the

Population Size)
Terminal set T3 = {d0, d1, d2}

T4 = {d0, d1, d2, d3}
Function set F = {AND,OR,NAND,NOR}

Table 1. The general parameters of the MEP
algorithm for solving even-parity problems.

A population of 100 individuals is used when the
influence of the number of genes is analysed and a code
length of 200 genes is used when the influence of the
population size is analysed.

For reducing the chromosome length we keep all the
terminals on the first positions of the MEP
chromosomes. We also increased the selection pressure
by using larger values (usually 10% of the population
size) for the tournament sample.

The results are depicted in Figures 1 and 2.

Figure 1: The relationship between the success rate
and the number of genes in a MEP chromosome.
Results are summed over 100 runs.

Figure 2: The relationship between the success rate
and the population size employed by the MEP
algorithm. Results are summed over 100 runs.

From Figures 1 and 2 it can be seen that MEP performs
very well on the considered test problem.

GP technique (without Automatically Defined
Functions (ADFs)) has been used for solving the even-3
and even-4 parity problems using a population of 4000
individuals [3]. The cumulative probability of success
was 100% for the even-3-parity problem and 42% for
the even-4-parity problem [3].

A perfect comparison between MEP and GP cannot be
made due to the incompatibility of the respective
representations. Having this in mind we do provide a
raw comparison between MEP and GP.

From Figure 1 it can be seen that MEP needs a
population of only 100 individuals with 270 genes to
achieve a success rate of 100% for the even-3-parity
problem. From Figure 2 it can be seen that a population
of only 300 individuals having 200 genes are enough to
solve the even-3-parity problem. Knowing that GP used
a population of 4000 individuals to achieve a success
rate of 100% we may infer that MEP needs a population
smaller with more than one order of magnitude than the
population needed by GP to solve the even-3-parrity
problem. For the even-4-parity problems MEP reaches
a success rate of 42% with a population of 350
individuals (as it can be seen from Figure 2). Again we
deal with an improvement of one order of magnitude.

3.2. Even 5-Parity Problem

For this problem MEP was run with a population of
1000 individuals having 600 genes each. In 5 runs (out

of 30) MEP was able to find a perfect solution for this
problem, yielding a success rate of 16.66%. Note that
for this problem GP (without ADFs) was not able to
obtain a solution (within 20 runs) even with a
population of 4000 individuals [3]. When the
population size was increased to 8000 individuals a
solution was obtained by GP after 8 runs [3].

We may conclude that MEP significantly outperforms
standard GP (without ADFs) for these particular cases
of the even-parity problem.

4. Conclusions and Further Work

In this paper, MEP technique has been used for solving
even-parity problems. Numerical experiments have
shown that MEP significantly outperforms standard GP
on the considered examples.

Further research will be focused on developing an
Automatically Defined Functions (ADFs) [3] system
for MEP. It is expected that using ADFs will improve
the performance of the MEP technique in the same way
it has improved the performance of the GP technique.

References

[1] A. Aho, R. Sethi and J. Ullman, “Compilers:
Principles, Techniques, and Tools”, Addison
Wesley, 1986.

[2] R. Bellman, “Dynamic Programming”, Princeton,
Princeton University Press, New Jersey, 1957.

[3] J. R. Koza, “Genetic Programming: On the
Programming of Computers by Means of Natural
Selection”, MIT Press, Cambridge, MA, 1992.

[4] J. R. Koza, “Genetic Programming II: Automatic
Discovery of Reusable Programs”, MIT Press,
Cambridge, MA, 1994.

[5] M. Oltean and D. Dumitrescu, “Multi Expression
Programming”, Technical-Report, UBB-01-2002,
(available at www.mep.cs.ubbcluj.ro).

[6] M. Oltean and C. Gro�an, “Evolving Evolutionary
Algorithms using Multi Expression Programming”,
European Conference on Artificial Life, Dortmund,
14-17 September 2003, Accepted for publication.

[7] G. Syswerda, “Uniform Crossover in Genetic
Algorithms”, Proceedings of the 3rd International
Conference on Genetic Algorithms, J.D. Schaffer
(Editor), Morgan Kaufmann Publishers, CA, pp 2-
9, 1989.

[8] D.H. Wolpert and W.G. McReady,“No Free Lunch
Theorems for Optimisation”, IEEE Transaction on
Evolutionary Computation, Vol.1, pp 67-82, 1997.

