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Abstract 

In this paper, the Multi Expression Programming 
(MEP) technique is used for solving even-parity 
problems. Numerical experiments show that MEP 
outperforms Genetic Programming (GP) with more than 
one order of magnitude for the considered test cases. 

1. Introduction 

Multi Expression Programming (MEP) [5, 6] is a new 
and very efficient technique that may be used for 
solving difficult real-world problems. A unique feature 
of MEP is its ability of storing multiple solutions in a 
single chromosome [5]. As shown in [5], this feature 
does not increase the complexity of the decoding 
process when compared to other Genetic Programming 
(GP) variants that stores a single solution in a 
chromosome. 

MEP technique has been used [5] for solving symbolic 
regression problems. Numerical experiments proved 
that MEP significantly outperforms similar techniques. 

In this paper, MEP is used for solving even-parity 
problems. According to [3] the Boolean even-parity 
functions appear to be the most difficult Boolean 
functions to detect via a blind random search. Due to 
this reason the ability of the evolutionary algorithms of 
performing an efficient search in the space of solutions 
can be tested using this problem as a benchmark. 

The results of the numerical experiments are compared 
to those provided by the Genetic Programming 
techniques [3, 4]. It can be easily seen that MEP 
outperforms GP with more than one order of 
magnitude. 

2. MEP Technique 

In this section Multi Expression Programming (MEP) 
paradigm is briefly described.  

2.1. MEP Algorithm 

Standard MEP algorithm uses steady state [7] as 
underlying mechanism. MEP algorithm starts by 
creating a random population of individuals. The 
following steps are repeated until a given number of 
generations is reached. Two parents are selected using a 
selection procedure. The parents are recombined in 
order to obtain two offspring. The offspring are 
considered for mutation. The best offspring replaces the 
worst individual in the current population if the 
offspring is better than the worst individual.  

The algorithm returns as its answer the best expression 
evolved along a fixed number of generations. 

2.2. MEP Representation 

MEP genes are (represented by) substrings of a variable 
length. The number of genes per chromosome is 
constant. This number defines the length of the 
chromosome. Each gene encodes a terminal or a 
function symbol. A gene encoding a function includes 
pointers towards the function arguments. Function 
arguments always have indices of lower values than the 
position of that function in the chromosome. 

This representation is similar to the way in which C and 
Pascal compilers translate mathematical expressions 
into machine code [1]. 

The proposed representation ensures that no cycle 
arises while the chromosome is decoded 
(phenotypically transcripted). According to the 
proposed representation scheme the first symbol of the 
chromosome must be a terminal symbol. In this way 
only syntactically correct programs (MEP individuals) 
are obtained. 

Example 

We use a representation where the numbers on the left 
positions stand for gene labels. Labels do not belong to 



 

the chromosome, they being provided only for 
explanation purposes. 

For this example we use the set of functions F = {+, *}, 
and the set of terminals T = {a, b, c, d}. An example of 
chromosome using the sets F and T is given below: 

1: a 
2: b 
3: + 1, 2 
4: c 
5: d 
6: + 4, 5 
7: * 3, 6 

2.3. Decoding MEP Chromosome and 
Fitness Assignment Process 

In this section it is described the way in which MEP 
individuals are translated into computer programs and 
the way in which the fitness of these programs is 
computed.. 

This translation is achieved by reading the chromosome 
top-down. A terminal symbol specifies a simple 
expression. A function symbol specifies a complex 
expression obtained by connecting the operands 
specified by the argument positions with the current 
function symbol. 

For instance, genes 1, 2, 4 and 5 in the previous 
example encode simple expressions formed by a single 
terminal symbol. These expressions are: 

E1 = a, 

E2 = b, 

E4 = c, 

E5 = d, 

Gene 3 indicates the operation + on the operands 
located at positions 1 and 2 of the chromosome. 
Therefore gene 3 encodes the expression: 

E3 = a + b. 

Gene 6 indicates the operation + on the operands 
located at positions 4 and 5. Therefore gene 6 encodes 
the expression: 

E6 = c + d. 

Gene 7 indicates the operation * on the operands 
located at position 3 and 6. Therefore gene 7 encodes 
the expression: 

E7 = (a + b) * (c + d). 

E7 is the expression encoded by the whole 
chromosome. 

There is neither practical nor theoretical evidence that 
one of these expressions is better than the others. 
Moreover Wolpert and McReady [8] proved that we 
cannot use the search algorithm’s behavior so far for a 
particular test function to predict its future behavior on 
that function. This is why each MEP chromosome is 
allowed to encode a number of expressions equal to the 
chromosome length. Each of these expressions is 
considered as being a potential solution of the problem.  

The value of these expressions may be computed by 
reading the chromosome top down. Partial results are 
computed by dynamic programming [2] and are stored 
in a conventional manner. 

As MEP chromosome encodes more than one problem 
solution, it is interesting to see how the fitness is 
assigned. 

Usually the chromosome fitness is defined as the fitness 
of the best expression encoded by that chromosome. 

For instance, if we want to solve symbolic regression 
problems the fitness of each sub-expression Ei may be 
computed using the formula: 
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where ok,i is the obtained result by the expression Ei for 
the fitness case k and wk is the targeted result for the 
fitness case k. In this case the fitness needs to be 
minimized. 

The fitness of an individual is set to be equal to the 
lowest fitness of the expressions encoded in 
chromosome: 
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When we have to deal with other problems we compute 
the fitness of each sub-expression encoded in the MEP 
chromosome and the fitness of the entire individual is 
given by the fitness of the best expression encoded in 
that chromosome.  

2.4. Search Operators 

Search operators used within MEP algorithm are 
crossover and mutation. Considered search operators 
preserve the chromosome structure. All offspring are 
syntactically correct expressions.  

Crossover 

By crossover two parents are selected and are 
recombined. For instance, within the uniform 



 

recombination the offspring genes are taken randomly 
from one parent or another. 

Mutation 

Each symbol (terminal, function of function pointer) in 
the chromosome may be target of mutation operator. By 
mutation some symbols in the chromosome are 
changed. To preserve the consistency of the 
chromosome its first gene must encode a terminal 
symbol. 

3 Numerical Experiments with 
Even-Parity Problems 

The Boolean even-parity function of k Boolean 
arguments returns T (True) if an even number of its 
arguments are T. Otherwise the even-parity function 
returns NIL (False) [3]. 

In applying MEP to the even-parity function of k 
arguments, the terminal set T consists of the k Boolean 
arguments d0, d1, d2, ... dk-1. The function set F consists 
of four two-argument primitive Boolean functions: 
AND, OR, NAND, NOR. According to [3] the Boolean 
even-parity functions appear to be the most difficult 
Boolean functions to detect via a blind random search. 

The set of fitness cases for this problem consists of the 
2k combinations of the k Boolean arguments. The 
fitness of an MEP chromosome is the sum, over these 
2k fitness cases, of the Hamming distance (error) 
between the returned value by the MEP chromosome 
and the correct value of the Boolean function. Since the 
standardized fitness ranges between 0 and 2k, a value 
closer to zero is better (since the fitness is to be 
minimized). 

Several numerical experiments with MEP have been 
performed for solving the even-3-parity, the even-4-
parity and the even-5-parity problems. 

Two statistics are of high interest:  

i. the relationship between the success rate and 
the number of genes in a MEP chromosome, 

ii. the relationship between the success rate and 
the size of the population used by the MEP 
algorithm.  

3.1. Even-3-Parity and Even-4-Parity 
Problems 

For the even-3-parity problem the terminal set is T3 = 
{d0, d1, d2}. For the even-4-parity problem the terminal 
set is T4 = {d0, d1, d2, d3}. 

Other MEP parameters are given in Table 1. 

Parameter Value 
Number of Generations 51 
Mutation probability 0.1 
Crossover type Uniform 
Selection q-tournament (q = 10% of the 

Population Size) 
Terminal set T3 = {d0, d1, d2} 

T4 = {d0, d1, d2, d3} 
Function set F = {AND,OR,NAND,NOR} 

Table 1. The general parameters of the MEP 
algorithm for solving even-parity problems. 

A population of 100 individuals is used when the 
influence of the number of genes is analysed and a code 
length of 200 genes is used when the influence of the 
population size is analysed.  

For reducing the chromosome length we keep all the 
terminals on the first positions of the MEP 
chromosomes. We also increased the selection pressure 
by using larger values (usually 10% of the population 
size) for the tournament sample. 

The results are depicted in Figures 1 and 2. 

 

Figure 1: The relationship between the success rate 
and the number of genes in a MEP chromosome. 
Results are summed over 100 runs.  

 



 

 

Figure 2: The relationship between the success rate 
and the population size employed by the MEP 
algorithm. Results are summed over 100 runs.  

From Figures 1 and 2 it can be seen that MEP performs 
very well on the considered test problem.  

GP technique (without Automatically Defined 
Functions (ADFs)) has been used for solving the even-3 
and even-4 parity problems using a population of 4000 
individuals [3]. The cumulative probability of success 
was 100% for the even-3-parity problem and 42% for 
the even-4-parity problem [3].  

A perfect comparison between MEP and GP cannot be 
made due to the incompatibility of the respective 
representations. Having this in mind we do provide a 
raw comparison between MEP and GP.  

From Figure 1 it can be seen that MEP needs a 
population of only 100 individuals with 270 genes to 
achieve a success rate of 100% for the even-3-parity 
problem. From Figure 2 it can be seen that a population 
of only 300 individuals having 200 genes are enough to 
solve the even-3-parity problem. Knowing that GP used 
a population of 4000 individuals to achieve a success 
rate of 100% we may infer that MEP needs a population 
smaller with more than one order of magnitude than the 
population needed by GP to solve the even-3-parrity 
problem. For the even-4-parity problems MEP reaches 
a success rate of 42% with a population of 350 
individuals (as it can be seen from Figure 2). Again we 
deal with an improvement of one order of magnitude. 

3.2. Even 5-Parity Problem 

For this problem MEP was run with a population of 
1000 individuals having 600 genes each. In 5 runs (out 

of 30) MEP was able to find a perfect solution for this 
problem, yielding a success rate of 16.66%. Note that 
for this problem GP (without ADFs) was not able to 
obtain a solution (within 20 runs) even with a 
population of 4000 individuals [3]. When the 
population size was increased to 8000 individuals a 
solution was obtained by GP after 8 runs [3].  

We may conclude that MEP significantly outperforms 
standard GP (without ADFs) for these particular cases 
of the even-parity problem. 

4. Conclusions and Further Work 

In this paper, MEP technique has been used for solving 
even-parity problems. Numerical experiments have 
shown that MEP significantly outperforms standard GP 
on the considered examples. 

Further research will be focused on developing an 
Automatically Defined Functions (ADFs) [3] system 
for MEP. It is expected that using ADFs will improve 
the performance of the MEP technique in the same way 
it has improved the performance of the GP technique. 
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