
Evolving Evolutionary Algorithms
using Multi Expression Programming

Mihai Oltean and Crina Groşan

Department of Computer Science
Faculty of Mathematics and Computer Science

Babeş-Bolyai University, Kogălniceanu 1
Cluj-Napoca, 3400, Romania.

{moltean, cgrosan}@cs.ubbcluj.ro

Abstract. Finding the optimal parameter setting (i.e. the optimal pop-
ulation size, the optimal mutation probability, the optimal evolutionary
model etc) for an Evolutionary Algorithm (EA) is a difficult task. In-
stead of evolving only the parameters of the algorithm we will evolve
an entire EA capable of solving a particular problem. For this purpose
the Multi Expression Programming (MEP) technique is used. Each MEP
chromosome will encode multiple EAs. An nongenerational EA for func-
tion optimization is evolved in this paper. Numerical experiments show
the effectiveness of this approach.

1 Introduction

Evolutionary Algorithms (EAs) [2, 5] are nonconventional tools for solving dif-
ficult real-world problems. They were developed under the pressure generated
by the inability of classical (mathematical) methods to solve some real-world
problems. Many of these unsolved problems are (or could be turned into) opti-
mization problems. Solving an optimization problem means finding of solutions
that maximize or minimize a criteria function [2].

Many EAs were proposed for dealing with optimization problems. Many so-
lution representations and search operators were proposed and tested within a
wide range of evolutionary models. There are several natural questions that are
to be answered in all of these evolutionary models: which is the optimal popula-
tion size?, which is the optimal individual representation?, which are the optimal
probabilities for applying specific genetic operators?, which is the optimal num-
ber of generations before halting the evolution? etc.

A breakthrough arose in 1995 when Wolpert and McReady unveiled their
work on the No Free Lunch (NFL) theorems [8]. The NFL theorems state that
all of the black-box algorithms perform equally well over the entire set of op-
timization problems. (A black-box algorithm does not take into account any
information about the problem or the particular instance being solved.) The
magnitudes of the NFL results stroke all of the efforts for developing a uni-
versal black-box optimization algorithm able to solve best all the optimization
problems.



In their attempt to solve problems, men delegated computers to develop
algorithms able to perform certain tasks. The most prominent effort in this
direction is Genetic Programming (GP) [3], an evolutionary technique used for
breeding a population of computer programs. Instead of evolving solutions for
a particular problem instance, GP is mainly intended for discovering computer
programs able to solve particular classes of problems. (This statement is only
partially true, since the discovery of computer programs may be also viewed as
a technique for solving a particular problem instance. The following could be an
example of a problem: ’Find a computer program that calculates the sum of the
elements of an array of integers.’)

There are many such approaches so far in the GP literature [1]. The evolving
of deterministic computer programs able to solve specific problems requires a lot
of effort.

Instead of evolving deterministic computer programs we will try to evolve a
full-featured evolutionary algorithm (i.e. the output of our main program will
be an EA able to perform a given task). Thus we will work with EAs at two
levels: the first (macro) level consists of a steady-state EA [6] which uses a fixed
population size, a fixed mutation probability, a fixed crossover probability etc.
The second (micro) level consists of the solution encoded in a chromosome from
the GA on the first level.

Having this aim in view we use an evolutionary model similar to Multi Ex-
pression Programming (MEP) [4]1 which is very suitable for evolving computer
programs that may be easily translated into an imperative language (like C or
Pascal). The evolved EA is a nongenerational one (i.e. there is no cycle during
evolution).

The paper is organized as follows: the MEP technique is described in section
2. The model used for evolving EAs is presented in section 3. The way in which
the fitness of an MEP individual is computed is described in section 4. Several
numerical experiments are performed in section 5.

2 MEP technique

The Multi Expression Programming (MEP) technique is described in this sec-
tion.

2.1 The MEP Algorithm

In this paper we use steady-state [6] as the underlying mechanism for MEP.
The steady-state MEP algorithm starts with a randomly chosen population of
individuals. The following steps are repeated until a termination condition is
reached: Two parents are selected (out of 4 individuals) by using a binary tour-
nament procedure [3] and they are recombined with a fixed crossover probability.
By the recombination of two parents two, offspring are obtained. The offspring

1 MEP source code is available at www.mep.cs.ubbcluj.ro.



are mutated and the best of them replaces the worst individual in the current
population (if the offspring is better than the worst individual in the current
population).

2.2 The MEP representation

The MEP genes are (represented by) substrings of variable length. The number of
genes in a chromosome is constant and it represents the chromosome length. Each
gene encodes a terminal (an element in the terminal set T ) or a function symbol
(an element in the function set F ). A gene encoding a function includes pointers
towards the function arguments. Function parameters always have indices of
lower values than the position of that function itself in the chromosome.

According to the proposed representation scheme, the first symbol in a chro-
mosome must be a terminal symbol. In this way only syntactically correct pro-
grams are obtained.

Example
We use a representation where the numbers on the left positions stand for

gene labels (or memory addresses). Labels do not belong to the chromosome,
they are provided only for explanatory purposes. An example of a chromosome
is given below (assuming that T = {a, b, c, d} and F = {+, -, *, /}):
1: a
2: b
3: + 1, 2
4: c
5: d
6: + 4, 5
7: * 2, 6

2.3 The MEP phenotypic transcription

This section is devoted to describing the way in which the MEP individuals are
translated into computer programs.

The MEP chromosomes are read in a top-down fashion starting with the first
position. A terminal symbol specifies a simple expression. A function symbol
specifies a complex expression (formed by linking the operands specified by the
argument positions with the current function symbol).

For instance, genes 1, 2, 4 and 5 in the previous example encode simple
expressions formed by a single terminal symbol. These expressions are: E1 = a;
E2 = b; E4 = c; E5 = d.

Gene 3 indicates the operation + on the operands located at positions 1 and
2 of the chromosome. Therefore gene 3 encodes the expression: E3 = a + b.

Gene 6 indicates the operation + on the operands located at positions 4 and
5. Therefore gene 6 encodes the expression: E6 = c + d.



Gene 7 indicates the operation * on the operands located at positions 2 and
6. Therefore gene 7 encodes the expression: E3 = b ∗ (c + d).

We have to choose one of these expressions (E1, . . . , E7) to represent the
chromosome. There is neither theoretical nor practical evidence that one of them
is better than the others. Thus, we choose to encode multiple solutions in a single
chromosome. Each MEP chromosome encodes a number of expressions equal to
the chromosome length (the number of genes). The expression associated to each
chromosome position is obtained by reading the chromosome bottom-up from
the current position, by following the links provided by the functions pointers.
The fitness of each expression encoded in a MEP chromosome is computed in a
conventional manner (the fitness depends on the problem being solved). The best
expression encoded in a MEP chromosome is chosen to represent the chromosome
(the fitness of a MEP individual equals the fitness of the best expression encoded
in that chromosome).

3 The Evolutionary Model

In order to use MEP for evolving EAs we have to define a set of terminal symbols
and a set of function symbols. When we define these sets we have to keep in mind
that the value stored by a terminal symbol is independent of other symbols in
the chromosome and a function symbol changes the solution stored in another
gene.

An EA usually has 4 types of genetic operators:

– Initialize - randomly initializes a solution,
– Select - selects the best solution among several already existing solutions
– Crossover - recombines two already existing solutions,
– Mutate - varies an already existing solution.

These operators will act as symbols that may appear into an MEP chromo-
some. The only operator that generates a solution independent of the already
existing solutions is the Initialize operator. This operator will constitute the ter-
minal set. The other operators will be considered function symbols. Thus, we
have T = {Initialize}, F = {Select, Crossover, Mutate}.

A MEP chromosome C, storing an evolutionary algorithm is:

1: Initialize {Randomly generates a solution.}
2: Initialize {Randomly generates another solution.}
3: Mutate 1 {Mutates the solution stored on position 1}
4: Select 1, 3 {Selects the best solution from those}

{stored on positions 1 and 3}
5: Crossover 2, 4 {Recombines the solutions on positions 2 and 4}
6: Mutate 4 {Mutates the solution stored on position 4}
7: Mutate 5 {Mutates the solution stored on position 5}
8: Crossover 2, 6 {Recombines the solutions on positions 2 and 6}



This MEP chromosome encodes multiple evolutionary algorithms. Each EA
is obtained by reading the chromosome bottom up, starting with the current
gene and following the links provided by the function pointers. Thus we deal
with EAs at two different levels: a micro level representing the evolutionary
algorithm encoded in a MEP chromosome and a macro level GA, which evolves
MEP individuals. The number of genetic operators (initializations, crossovers,
mutations, selections) is not fixed and it may vary between 1 and the MEP
chromosome length. These values are automatically discovered by the evolution.
The macro level GA execution is bound by the known rules for GAs (see [2]).

For instance, the chromosome defined above encodes 8 EAs. They are given
in Table 1.

Table 1. Evolutionary Algorithms encoded in the MEP chromosome C

EA1 EA2 EA3 EA4

i1=Initialize i1=Initialize i1=Initialize i1 = Initialize
i2=Mutate(i1) i2=Mutate(i1)

i3=Select(i1,i2)

EA5 EA6 EA7 EA8

i1=Initialize i1=Initialize i1=Initialize i1=Initialize
i2=Initialize i2=Mutate(i1) i2=Initialize i2=Initialize
i3=Mutate(i1) i3=Select(i1, i2) i3=Mutate(i1) i3=Mutate(i1)
i4=Select(i1, i3) i4=Mutate(i3) i4=Select(i1, i3) i4=Select(i1, i3)
i5=Crossover(i1, i4) i5=Crossover(i2, i4) i5=Mutate(i4)

i6=Mutate(i5) i6=Crossover(i2, i5)

Remarks:

(i) In our model the Crossover operator always generates a single offspring from
two parents. The crossover operators generating two offspring may also be
designed to fit our evolutionary model.

(ii) The Select operator acts as a binary tournament selection. The best out of
two individuals is always accepted as the selection result.

(iii) The Initialize, Crossover and Mutate operators are problem dependent.

4 Fitness assignement

We have to compute the quality of each EA encoded in the chromosome in order
to establish the fitness of a MEP individual. For this purpose each EA encoded
in a MEP chromosome is run on the particular problem being solved.

Roughly speaking the fitness of a MEP individual is equal to the fitness of
the best solution generated by one of the evolutionary algorithms encoded in
that MEP chromosome. But, since the EAs encoded in a MEP chromosome use



pseudo-random numbers it is likely that successive runs of the same EA generate
completely different solutions. This stability problem is handled in the following
manner: each EA encoded in a MEP chromosome is executed (run) more times
and the fitness of a MEP chromosome is the average of the fitness of the best EA
encoded in that chromosome over all runs. In all of the experiments performed
in this paper each EA encoded into a MEP chromosome was run 200 times.

5 Numerical experiments

In this section, we evolve an EA for function optimization. For training purposes
we use the Griewangks function [7].

Griewangks test function is defined by the equation (1).

f(x) =
1

4000

n∑

i=1

x2
i −

n∏

i=1

cos

(
xi√

i

)
+ 1 (1)

The domain of definition is [−500, 500]n. We use n = 5 in this paper. The
optimal solution is x0 = (0,. . . ,0) and f(x0) = 0. Griewangk’s test function has
many widespread local minima which are regularly distributed.

An important issue concerns the representation of the solutions evolved by
the EAs encoded in an MEP chromosome and the specific genetic operators used
for this purpose. The solutions evolved by the EAs encoded in MEP chromo-
somes are represented by using real values [2] (i.e. a chromosome of the second
level EA is an array of real values). By initialization, a random point within
the definition domain is generated. The convex crossover with α = 1

2 and the
Gaussian mutation with σ = 0.5 are used.

5.1 Experiment 1

In this experiment we are interested in seeing the way in which the quality
of the best evolved EA improves as the search process advances. The MEP
algorithm parameters are: Population size = 100; Code length = 3000 genes;
Number of generations = 100; Crossover kind = Uniform; Crossover probability
= 0.7; Mutations / chromosome = 5; Terminal set = {Initialize}; Function set
= {Select, Crossover, Mutate}. The results of this experiment are depicted in
Fig.1.

Fig.1 clearly shows the effectiveness of our approach. The MEP technique
is able to evolve an EA for solving optimization problems. The quality of the
best evolved EA is 8.5 at generation 0. That means that the fitness of the best
solution obtained by the best evolved EA is 8.5 (averaged over 200 runs). This
is a good result, knowing that the worst solution over the definition domain is
about 313. After 100 generations the quality of the best evolved EA is 3.36.



Fig. 1. The fitness of the best individual in the best run and the average (over 10 runs)
of the fitness of the best individual over all runs.

5.2 Experiment 2

We are also interested in seeing how the structure of the best evolved EA changed
during the search process.

The evolution of the number of the genetic operators used by the best evolved
EA is depicted in Fig. 2.

Fig. 2. The fitness of the best individual in the best run and the average (over 10 runs)
of the fitness of the best individual over all runs.

From Fig. 2 it can be seen that the number of the genetic operators used by
the best EA increases as the search process advances. For instance the averaged
number of Initializations in the best EA from generation 0 is 27, while the
averaged number of Initializations in the best evolved EA (after 100 generations)



is 43. The averaged number of Mutations is small (less than 18) when compared
to the number of occurrences of other genetic operators.

6 Conclusions and further work

A minutely described method for evolving evolutionary algorithms has been
proposed in this paper. The numerical experiments emphasize the robustness
and the effectiveness of this approach.

Further numerical experiments will analyze the relationship between the
MEP parameters (such as the population size, the chromosome length, and the
mutation probability) and the ability of the evolved EA to find optimal solutions.
It is expected that an increased population size will bring about a substantial
increase in the evolved EA performances.

The generalization ability of the evolved EA (how well it will perform on
some new test problems) will also be studied. A larger set of functions should
be used in order to increase the generalization ability.

An important issue is related to the amount of memory required by the
evolved EA. No optimization regarding the memory used by the evolved EA was
done in this paper. For instance, if the evolved EA performs 20 Initializations,
25 it Selections, 50 Crossover and 15 it Mutations, the memory required by
the algorithm is 110 times the memory required for storing an individual. It
is obvious that this amount of memory can be reduced because some memory
locations can be overridden by newly created individuals. A simple algorithm
that checks whether a memory location will be accessed or not in the future can
be used for this purpose.

References

1. Brameier, M., Banzhaf, W.: A Comparison of Linear Genetic Programming and
Neural Networks in Medical Data Mining, IEEE Transactions on Evolutionary
Computation, Vol. 5. (2001) 17-26

2. Goldberg, D.E.,: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing, Addison-Wesley, Reading, MA, (1989)

3. Koza, J. R.,: Genetic Programming: On the Programming of Computers by Means
of Natural Selection, MIT Press, Cambridge, MA, (1992)

4. Oltean M., Dumitrescu D.,: Multi Expression Programming, technical report,
UBB-01-2002, Babeş-Bolyai University, Cluj-Napoca, Romania (available from
www.mep.cs.ubbcluj.ro).

5. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michi-
gan Press, Ann Arbor (1975)

6. Syswerda, G.,: Uniform crossover in genetic algorithms. In Schaffer, J.D., (ed.):
Proc. 3rd Int. Conf. on Genetic Algorithms, Morgan Kaufmann Publishers, San
Mateo, CA, (1989) 2-9

7. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Transac-
tion on Evolutionary Computation, Vol. 3(2) (1999) 82-102

8. Wolpert, D.H., McReady W.G.,: No Free Lunch Theorems for Search, technical
report SFI-TR-02-010, Santa Fe Institute (1995)


